Physicists from the ALICE (A Large Ion Collider Experiment) Collaboration at CERN’s Large Hadron Collider (LHC) have developed a new technique that opens a door to high-precision studies of the dynamics of the strong force between unstable hadrons.

An artist’s impression of the interaction between Omega (Ω) hyperon (left) and a proton (right). Image credit: Daniel Dominguez.
Hadrons are composite particles made of two or three quarks bound together by the strong interaction, which is mediated by gluons.
This interaction also acts between hadrons, binding nucleons (protons and neutrons) together inside atomic nuclei.
One of the biggest challenges in nuclear physics today is understanding the strong interaction between hadrons with different quark content from first principles, that is, starting from the strong interaction between the hadrons’ constituent quarks and gluons.
Calculations known as lattice quantum chromodynamics (QCD) can be used to determine the interaction from first principles, but these calculations provide reliable predictions only for hadrons containing heavy quarks, such as hyperons, which have one or more strange quarks.
In the past, these interactions were studied by colliding hadrons together in scattering experiments, but these experiments are difficult to perform with unstable hadrons such as hyperons.
This difficulty has so far prevented a meaningful comparison between measurements and theory for hadron-hadron interactions involving hyperons.
Physicists from the ALICE Collaboration show how a technique based on measuring the momentum difference between hadrons produced in proton-proton collisions at the LHC can be used to reveal the dynamics of the strong interaction between hyperons and nucleons, potentially for any pair of hadrons.
The technique is called femtoscopy because it allows the investigation of spatial scales close to 1 femtometer, about the size of a hadron and the spatial range of the strong-force action.
This method has previously allowed the ALICE researchers to study interactions involving the Lambda (Λ) and Sigma (Σ) hyperons, which contain one strange quark plus two light quarks, as well as the Xi (Ξ) hyperon, which is composed of two strange quarks plus one light quark.
In the new study, they used the technique to uncover with high precision the interaction between a proton and the rarest of the hyperons, the Omega (Ω) hyperon, which contains three strange quarks.
“The precise determination of the strong interaction for all types of hyperons was unexpected,” said Professor Laura Fabbietti, a physicist at the Technical University of Munich and a member of the ALICE Collaboration.
“This can be explained by three factors: the fact that the LHC can produce hadrons with strange quarks in abundance, the ability of the femtoscopy technique to probe the short-range nature of the strong interaction, and the excellent capabilities of the ALICE detector to identify particles and measure their momenta.”
“Our new measurement allows for a comparison with predictions from lattice QCD calculations and provides a solid testbed for further theoretical work,” said Dr. Luciano Musa, spokesperson of the ALICE Collaboration.
“Data from the next LHC runs should give us access to any hadron pair.”
The results were published in the journal Nature.
_____
ALICE Collaboration. 2020. Unveiling the strong interaction among hadrons at the LHC. Nature 588, 232-238; doi: 10.1038/s41586-020-3001-6
This article is based on text provided by CERN.